1530nm ASE Source For FOG

1. Introduction:

1530nm ASE Source is designed for high performance fiber optical gyroscope. According the different structure of FOG, Csrayzer provides two kinds of package structure, Circles and rectangles. It can satisfy different requirement of structure of FOG. This ASE source has adopted path structure optimization, Spectral filtering, Power Control method and so on. These are very important to improve the Scale factor and Stability at full temperature. In order to meet the different requirement of environment. The ASE source has been tested and selected by -45 to +70 $^{\circ}$ C. Including optical component and electric component. ASE source has adopted Integrated Precision temperature control technology. And these technologies ensure spectral stability and reduce the power consumption.

2. Features:

Gaussian Spectrum High Reliability Better Temperature Adaptation, -45 to $70\,^{\circ}$ C High Stability of Output Power, Low Wavelength Temperature Shift.

3. Parameter:

Parameter	Unit	Min	Тур	Max
Center Wavelength	nm	1528	1531	1533
Bandwidth@3dB	nm	6.5	7	7.5
Output Power	mW	5	6	7
Degree Of Polarization	%	-	-	1
Spectral Modulation Depth	dB	-	-	0.02
Output Power Stability(@25±3°C) @1 Hours	%	-	-	1
Output Power Stability(@25±3°C) @8 Hours	%			
Power Stability (-45~70°C) @1 Hours	%	-	1	1.5
Power Stability (-45~70°C) @8 Hours	%			
Wavelength Stability (@25±3℃) @1 Hours	ppm	-	3	5
Wavelength Stability (@25±3℃) @8 Hours	ppm			
Wavelength Stability (-45~70°C) @1 Hours	ppm	-	15	20
Wavelength Stability (-45~70°C) @8 Hours	ppm			
Operating Temperature	$^{\circ}$ C	-45	-	+70
Storage Temperature	$^{\circ}$ C	-50	-	+85
Relative Humidity	%	5	-	90
Max. Consumption(-45~70°C)	W	-	-	4.0
Operating Current(@25±3°C)	Α	-	0.19	-
Power Supply	-	DC 5V		
Electric Connector	-	5V-GND		
Fiber Type	-	SMF,80/165 um		
Package Dimension	mm	Ф120, Ф98, Ф70 Or Specify		
*Pomark1. Output Dower Stability. (Dmay Dmin) / (Dmay+Dmin) *100%.				

^{*}Remark1: Output Power Stability: (Pmax-Pmin) / (Pmax+Pmin) *100%;

^{*}Remark2: Output Wavelength Stability: (λmax-λmin) / (λmax+λmin) *10⁻⁶;